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Abstract

Background: Self-injurious behaviour (SIB) can be classified as intentional, direct injuring of 

body tissue usually without suicidal intent. In its non-suicidal form it is commonly seen as a 

clinical sign of borderline personality disorder, autism, PTSD, depression, and anxiety affecting a 

wide range of ages and conditions. In rhesus macaques SIB is most commonly manifested through 

hair plucking, self-biting, self-hitting, and head banging. SIB in the form of self-biting is observed 

in approximately 5–15% of individually housed monkeys. Recently, glial cells are becoming 

recognised as key players in regulating behaviors.

Method: The goal of this study was to determine the role of glial activation, including astrocytes, 

in macaques that had displayed SIB. To this end, we performed immunohistochemistry and next 

generation sequence of brain tissues from rhesus macaques with self-injurious behaviours.

Results: Our studies showed increased vimentin, but not nestin, expression on astrocytes of 

macaques displaying SIB. Initial RNA Seq analyses indicate activation of pathways involved in 

tissue remodeling, neuroinflammation and cAMP signaling.

Conclusions: Glia are most probably activated in primates with self-injury, and are therefore 

potential novel targets for therapeutics.
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Introduction.

Self-Injurious Behaviour (SIB), which has been defined as intentional, direct injuring of 

body tissue without suicidal intent (Baguelin-Pinaud et al., 2009), is a serious global health 

problem occurring in several high risk populations with neuropsychiatric diseases / disorders 

(including borderline personality disorder, PTSD, depression, autism spectrum disorders) 

and in other neurodevelopmental disorders (Zlotnick et al., 1997, Mork et al., 2013, Al-

Sharqi et al., 2012). Of particular concern is its lack of effective treatment (Navines et al., 

2013, Novak et al., 2014) and growth in children and adolescence, most commonly in cases 

of depression or neurodevelopment (Jacobson and Gould, 2007). Macaques have been noted 

to spontaneously develop SIB (Novak, 2003), an important distinguishing factor from other 

animal models (namely rodents) which tend to be induced (with some exceptions (Bechard 

et al., 2017), making the macaque model a closer match with the human analog (Novak et 

al., 2014, Tiefenbacher et al., 2005, Davenport et al., 2008). This fact is especially important 

when considering the prevalence of SIB in populations with neurodevelopmental disorders. 

Such similarities with human SIB phenotypes suggest that a molecular investigation of SIB 

macaques could provide beneficial insight into the human pathology of SIB.

The use of macaques in research appears to represent the best compromise between 

phylogenetic and physiological relatedness to humans, cost efficiency, life-span, resources, 

expertise in animal husbandry practices, and adaptability for translation of results to 

humans. Aspects of research studies that utilise primarily rhesus macaques include 

neurobiology, anatomy, cognition and behavior (Urbanski and Sorwell, 2012, Voytko and 

Tinkler, 2004, Peters, 2002, Bailey et al., 2011, Schultz et al., 2001), reproductive 

senescence (Atsalis and Margulis, 2008), and immune senescence (Asquith et al., 2012, 

Messaoudi et al., 2011, Vaccari and Franchini, 2010). The rhesus macaque has been 

considered the “gold standard” model for human research, has been in use since the 1960’s, 

and has proven to have very high translational validity with respect to neurologic and 

behavioral assessments of infants (Nelson and Winslow, 2009). Equally important is the 

striking similarity between the innate immune systems of rhesus monkeys and humans 

(Evans and Silvestri, 2013). Due to this similarity, rhesus monkeys are susceptible to 

infection by many pathogens that result in disease states almost identical to those found in 

humans (a noteworthy example being Simian Immunodeficiency Virus, which induces an 

AIDS-like disease, including CNS compliactions, in rhesus monkeys (Lackner and Veazey, 

2007). Importantly, the immune system of rhesus monkeys is more similar to humans than 

the immune systems of rodents, making monkeys the best choice for evaluating and 

correlating immunologic responses and CNS disease. Indeed, recent studies have linked 

severe stress to specific immune activation (Beurel and Lowell, 2017) and glial activation 

(Nijs et al., 2017).
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While once controversial, the concept of glia regulating complex behaviours is rapidly 

gaining ground. While much work focusses on schizophrenia (see review by Xia and 

colleagues (Xia et al., 2016)), the basic physiology of abnormal astrocyte activation would 

be conserved. The very recent study by the Goldman group definitively showed astrocytes 

are responsible for behavioral traits (Windrem et al., 2017, Han et al., 2013). We have shown 

that astrocytes of macaques with SIB have a distinct morphological atrophy, and that the 

glial activation may be a component of the behaviors (Lee et al., 2013b, Lee et al., 2015a).

Support for such potential findings is grounded in the neuroinflammatory response of 

Spontaneous SIB Macaques. Such subjects demonstrated astrocyte activation, which has 

been demonstrated by the upregulation of intermediate filaments (IF), most specifically glial 

fibrillary acidic protein (GFAP), vimentin, and nestin. Furthermore, such responses have 

been linked to the dysregulation of downstream gene expression, suggesting 

neuroinflammation in SIB macaques can also be studied at the molecular level. To this end, 

we examined brain tissues from macaques with SIB, and compared them with matched 

tissues from animals without reported abnormal behaviors.

Methods.

Ethics statement, Animal housing and selection of tissues

Animals were maintained in Animal Biosafety Level 2 housing with a 12:12-hour light:dark 

cycle, relative humidity 30% to 70%, and a temperature of 17.8 to 28.9°C. Water was 

available ad libitum, and a standard commercially formulated nonhuman primate diet (Lab 

Fiber Plus Monkey DT, 5K63, PMI Nutrition International, St. Louis, MO) was provided 

twice daily and supplemented daily with fresh fruit and/or forage material as part of the 

environmental enrichment program. All animals at Tulane National Primate Research Center 

(TNPRC) received environmental enrichment, widely used to improve welfare in captive 

macaques. Over the course of their life times, all subjects experienced some pair or group 

housing as well as periods of single housing. Each cage (Allentown, Inc., Allentown, NJ) 

measured 36 inches (91.4 centimeters) in height with 4.3– 8.6 square feet (0.4–0.8 square 

meters) of floor space and contained a perch, a portable enrichment toy, a mirror, and a 

forage board for feeding enrichment. Practices in the housing and care of animals conformed 

to the regulations and standards of the PHS Policy on Humane Care and Use of Laboratory 

Animals, and the Guide for the Care and Use of Laboratory Animals. The Tulane National 

Primate Research Center (Animal Welfare Assurance # A4499–01) is fully accredited by the 

Association for the Assessment and Accreditation of Laboratory Animal Care-International. 

All animals are routinely cared for according to the guidelines prescribed by the NIH Guide 

to Laboratory Animal Care. The TNPRC conducts all research in accordance with the 

recommendations of the Weatherall report – “The use of non-human primates in research.” 

The Institutional Animal Care and Use Committee (IACUC) of the Tulane National Primate 

Research Center approved all animal-related protocols, including any treatments used with 

nonhuman primates. All animal procedures were overseen by veterinarians and their staff.

Historically, 15–20 animals per year (from a colony of approximately 5,000) are identified 

as exhibiting self-biting behavior and/or self-wounding at the TNPRC. Records of self-
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wounding and clinical intervention are maintained in the animal records system. All such 

individuals receive enhanced monitoring and implementation of inanimate enrichment.

Animals were humanely euthanised by the veterinary staff at the TNPRC in accordance with 

endpoint policies. Euthanasia was conducted by anesthesia with ketamine hydrochloride (10 

mg/kg) followed by an overdose with sodium pentobarbital and immediate necropsy. This 

method was consistent with the recommendation of the American Veterinary Medical 

Association guidelines (Lee et al., 2013b). Three brain regions approximately 1cm thick are 

routinely collected during necropsy of colony animals at TNPRC representing frontal lobe, 

parietal & temporal lobe /thalamus/ basal ganglia, and cerebellum / occipital lobe. The 

frontal area corresponds to a section through Brodmann area 8, between 32 and 33, and 

ending around Brodmann 12. All tissues are fixed at routine necropsy by immersion in 10% 

neutral buffered formalin with zinc modification for 48 hours before trimming and paraffin 

embedding.

For this retrospective study, tissues were selected solely on their availability in the TNPRC 

tissue archive: no animals were euthanised for this study. All study subjects had been 

euthanised when clinical or research-related endpoints were reached. For this reason, we 

were not able to examine regional differences in protein or gene expression. None of the 

macaques had been used for infectious or pharmacological studies, nor had any received 

medication for the SIB. Tissue taken from the frontal lobe from 9 control, and 6 SIB rhesus 

macaques (Macaca mulatta) were used for this and previous studies (Lee et al., 2015b, Lee 

et al., 2013b), for a total of 15 animals (Table 1).

Immunohistochemistry was performed as standard in the Division of Comparative pathology 

at TNPRC using pre-conjugated GFAP-Cy3 and Alexa 488- conjugated secondary 

antibodies against TLR2, vimentin or nestin. Slides were images on a Nikon fluorescent 

microscope, and proportions of double-labeled astrocytes were determined. Statistical 

significance was determined using Student’s t-test of proportions of double-postitive (GFAP 

and either vimentin or nestin) cells, as is routine in the MacLean lab (Snook et al., 2014, 

Robillard et al., 2016, Lee et al., 2016, Lee et al., 2015b, Lee et al., 2014, Lee et al., 2013b, 

Lee et al., 2013a, Inglis et al., 2016).

To determine the underlying mechanisms, Total RNA was isolated from five sequentially-cut 

6μm paraffin sections. Next Generation Sequencing (NGS) sequencing was performed by 

Vaccine and Gene Therapy Institute, Port St. Lucie, FL on an Illumina HiSeq platform. To 

remove ribosomal RNA, exome capture was utilized to probe for coding RNA sequences 

where the exome probe set covers coding RNA sequences. Exome library was then 

generated and aligned against NCBI37/hp19 human reference genome with 91% homology 

for target regions. Results were aligned in the fastq format and transcript annotation was 

aligned to ensemble rhesus macaque, Macaca mulatta (Mmul 1.74). Quality control 

measures were as follows: masking of abundant transcripts (tRNA/rRNA), read distribution 

in each sample, maintaining Q-score of 20 or greater, and removal/trimming of adaptors. 

Mapped reads were determined through maximum 2 misaligned bases mapped to the 

annotation exons. Alignments were made with the STAR aligner (Dobin et al., 2013). 

Counts were determined from the number of reads mapped to each aligned read and 
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genomic feature. Differential gene expression tests were performed using EdgeR software 

and fold change in gene expression were calculated using counts. Normalization factors 

were calculated by using the raw library size with the TMM (Trimmed Mean of M-values). 

Pathway analysis was performed using the Pathway Interaction Database (Schaefer et al., 

2009). FDR was calculated with Bonferroni correction, however due to decrease in detection 

of genes FDR below 0.05 was not detected for most genes in each sample set. For pathway 

analysis threshold p-value scores generated by edgeR set at 0.05 or less was used. Fold 

change and p-value for all detectable genes can be found in supplemental file S1.

Results.

In control macaques, vimentin expression was limited to endothelial cells (Figure 1A). In 

macaques with SIB, we noted that astrocytes had increased levels of vimentin (Figure 1B), 

that reached significance in white matter astroctyes only (1C). We were very surprised to 

note that there was no increase in nestin expression, at least as measured as the proportion of 

GFAP / nestin double positive cells (1D).

As a first step to determine the underlying mechanisms of cell activation in animals with 

SIB, we performed RNA Seq analysis. We filtered data to determine genes that were either 

up-regulated or down-regulated to the highest degree. The top ten genes that were up- or 

down-regulated are presented in Table 2. Seven of the top ten genes that were either up- or 

down-regulated have antimicrobial functions (noted by *), confirming our previous studies 

of immune activation in these animals (Lee et al., 2013b, Lee et al., 2015b). Further, two 

genes were directly associated with astrocyte activation or maturation (§), and eight were 

linked to behavioral abnormalities and/or intellectual disability (#). Of the top 20 genes up 

or down regulated, eight were previously associated with behavioral or developmental 

disabilities, and seven with inflammation.

To determine the molecular mechanisms underlying this differential activation of glial cells, 

we have begun analyses of the RNA Seq data. Comparing total genes up and down 

regulated, there were 437 genes down regulated, and 526 up regulated. At the molecular 

level, we have noted there were multiple pathways activated linked to tissue remodeling and 

inflammation (Figure 2A). When we imported genes either up- or down-regulated into 

String software, to explore how these gene changes were inter-related.

We examined vimentin upregulation by tracking other molecular components associated 

with IF upregulation, which may be part of a mechanism of altered glial cell function in SIB. 

While vimentin protein was clearly increased (Figure 1A), there was no increase in vimentin 

at the mRNA level (from RNA seq data). However, several other genes important for 

vimentin expression were differentially regulated (Figure 2B). Importantly, within this 

pathway, TPM3 (1.6 fold), TNNT2 (3.3-fold), CASP7 (4.5-fold), NTRK2 (3.1-fold) and 

MYH14 (5.3-fold) were upregulated, whereas MYL2 (9.1-fold) was downregulated. In 

summary, one could reasonably explain increased vimentin within astrocytes.

Separately, we noted that multiple genes associated with Notch and Wnt signaling pathways 

were also upregulated (Figure 2C). Of note, HES4 (4.3-fold), DLL1 (2.7-fold), PSEN2 (3.3-
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fold), WNT2B (3.2-fold), TCF (2.4-fold) and CTBP2 (3.6-fold) were all upregulated. These 

genes have roles in neurogenesis and neuronal differentiation (HES, PSEN2, TCF4 and 

CTBP2)(Kageyama et al., 2005), further strengthening the potential for altered neuronal 

plasticity in macaques with SIB.

Discussion.

We have previously reported that animals with SIB exhibited shorter and less complex 

astrocytes that were more likely to be activated with regards to TLR2 (Lee et al., 2013b) 

expression. In this study, we aimed to better understand the molecular basis for 

spontaneously occurring SIB in rhesus macaques, and by inference, self-injury in humans. 

As we had previously showed innate immune activation and altered expression patterns of 

GFAP in astrocytes, we were interested in examining other glial activation markers and 

underlying molecular changes in frontal cortex of macaques with SIB. That vimentin, GFAP 

and TLR2 were altered, but not nestin, indicates at least a degree of specificity to the 

astrocyte activation (Duan et al., 2015). Molecular analyses of differentially-regulated genes 

were linked to cellular differentiation, innate immune activation and vascular remodeling.

Both Biocarta and the NCI-Nature curated pathway analysis tools indicate that the Rho 
pathway was most upregulated in the SIB macaques. RhoGTPases have been identified as 

potential targets in rodent models of Rett syndrome (De Filippis et al., 2012). While 

astrocytic degeneration in animals and humans with depressed phenotypes could point to 

Rho pathway activation, this study provides further evidence in primates. Upregulation of 

HES4 could lead to extensive remodeling in key brain areas (Bai et al., 2015) through 

activation of the rho and rac (Hall and Lalli, 2010), as well as the wnt pathways. Further, 

activation of the wnt pathway can increase expression of vimentin (Knoll et al., 2014), 

leading to further remodeling.

Astrocytes are glial cells important in maintaining homeostasis and the blood brain barrier, 

regulating neurogenesis and supporting metabolism at synapses (Lee and MacLean, 2015). 

There are several reports of GFAP-low/negative astrocytes, including in depressive disorders 

(Fatemi et al., 2004, Torres-Platas et al., 2015, Tynan et al., 2013, Miguel-Hidalgo et al., 

2010). Altered expression of GFAP, vimentin (Al-Ahmad et al., 2011), and nestin (Strong et 

al., 2004, Pekny et al., 1998) is linked to altered vesicle motility in astrocytes (Potokar et al., 

2007). Therefore IF changes could logically be linked with altered secretion of pro- or anti-

inflammatory molecules as well as with morphological changes. This hypothesis is 

supported by several lines of evidence: astrocytes show altered morphology concomitant 

with inflammation (Xing et al., 2008), associated with altered expression of IFs.

Self-injurious behaviour in macaques is a spontaneously occurring phenomenon, affecting 

approximately 5% of the captive population. The underlying molecular mechanisms have 

remained somewhat a mystery. As such, these studies expand upon those of induced 

depressive-like behaviors in rodents that have shown glial activation and neuroinflammation 

as probable mechanisms (Tynan et al., 2013, Hinwood et al., 2013). We acknowledge that 

ideally tissues would be collected prospectively, allowing simultaneous collection of CSF 

and plasma for cytokine studies, and deeper studies of links between mRNA and protein 
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expression. Notable in this study was increased vimentin expression at the protein, but not 

the mRNA levels. In vitro studies could dissect this and other disconnects between protein 

and mRNA expression. Further, as indicated in Figure 2C, several genes associated with vim 
expression were differentially expressed, potentially facilitating increased protein 

expression. Future studies will validate the top hits by PCR, and provide pathway targets for 

potential behavior modifying medicaments.

An important caveat in these studies is the retrospective nature of the studies. It would be 

very interesting to repeat these studies using an induced depressive behaviour model (Li et 

al., 2013) with age and social hierarchy matched animals with no history of self-injury. 

Further investigation is needed to determine precisely which cells are activated, and if 

treatment with antidepressants reverse all the components of the activation observed (Lee et 

al., 2015a).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Astrocytes in macaques with SIB have increased vimentin, but not nestin, expression.
Control macaques have very low expression of vimentin (A) in white matter of frontal lobes. 

There was increased vimentin expression in macaques flagged for SIB (B), which was 

statistically significant, increasing from 4% to 16% (C). There was no significant change in 

the proportion of nestin positive astrocytes in animals with SIB (D).

Ramsey et al. Page 11

J Intellect Disabil Res. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Gene expression analyses of monkeys with self-injury.
Graphical representation for pathways altered following self injury. Results represent –log 

(p-value) where p-value determined by number of genes in each pathway, relevance of genes 

to each pathway and number of molecules in database. Data represents probability that 

altered genes are involved in a particular pathway. Analysis was performed using the 

Pathway Interaction Database (performed on July 21, 2015). Analyses of interconnected 

genes were performed using String software. It was noted that genes linked to vimentin 

expression were differentially-regulated (B). Genes associated with wnt and notch were also 

differentially-regulated (C).
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Table 1.

Animals, treatment groups, behavioral status and neuropathologic findings, Characteristics of animals on this 

study.

Animal
#

Necropsy
# SIB Age

(years) Sex Neuropathologic findings
(NSL = no significant lesions)

CN59 08A690 YES 19.52 M Spongiosis

GB61 11A128 YES 5.65 M NSL

N061 10A556 YES 18.31 M Lipofuscin

A999 91A083 YES 12.52 M Data not available

N539 01A315 YES 8.87 F Data not available

EH70 06A143 YES 3.00 F NSL

EI93 08A523 NO 5.31 F NSL

HT22 11A238 NO 2.91 M NSL

HM63 11A263 NO 3.04 M NSL

HN64 11A280 NO 3.03 M NSL

HP24 11A299 NO 3.03 M NSL

EB20 06A146 NO 3.82 F NSL

AV71 08A520 NO 18.42 M NSL

N142 11A297 NO 18.98 M NSL

J650 11A560 NO 22.26 M NSL
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Table 2.

Top ten genes up- or down-regulated.

Gene Name logFC logCPM LR PValue

# HAL 10.429 4.225 23.362 0.000

* BPIFA2 9.244 2.254 9.128 0.003

* MUC7 8.825 1.423 9.773 0.002

HOXD4 8.677 1.552 8.043 0.005

* PI3 8.280 0.968 8.204 0.004

# HBB 7.947 0.665 7.564 0.006

BEX5 7.731 1.146 8.613 0.003

* HRG 7.627 1.706 6.586 0.010

§ NKX6–1 7.553 0.374 6.816 0.009

# SLC2A2 7.493 0.393 6.952 0.008

* RNASE7 −11.303 4.921 9.056 0.003

# CPS1 −10.711 4.400 10.196 0.001

# INVS −10.293 4.069 9.828 0.002

# CA3 −9.957 3.453 7.743 0.005

* MYPN −9.804 3.564 11.549 0.001

# SNORD115 −9.769 4.854 11.732 0.001

*§ FSHR −9.646 3.192 5.777 0.016

# GALE −9.505 3.099 8.456 0.004

ACTG2 −9.469 3.302 12.627 0.000

CD28 −9.246 2.978 7.350 0.007

(*)
The ten genes most up- or down-regulated in SIB are shown. Note that seven of these 20 genes are associated inflammation,

(#)
eight are associated with behavioral or intellectual disabilities,

(§)
and two are directly linked to astrocyte activation / maturation .
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